

Der Weg von CLSI zu EUCAST

Michael Lefmann, 25.03.2013

Von CLSI zu EUCAST

Resistenztestung

Entscheidung für EUCAST

Implementierung

Resistenzstatistik

Der "wahre" Breakpoint ???

Table 1. Similarities and differences in international breakpoint systems—current cefotaxime and ciprofloxacin breakpoints for Enterobacteriaceae in Europe and the USA

	Cefotaxim breakpoint		Ciprofloxacin breakpoint (mg/L)			
Breakpoint committee (country)	susceptible	resistant	susceptible	resistant		
BSAC(UK)	≤2	(≥4)	≤1	≥2		
CA-SFM (France)	≤4	>32	≤1	>2		
CRG (Netherlands)	≤4	>16	≤1	>2		
DIN (Germany)	≤2	≥16	≤1	≥4		
NCCLS (USA)	≤8	≥64	≤1	≥4		
NWGA (Norway	≤1	≥32	≤0.12	≥4		
SRGA (Sweden)	≤0.5	≥2	≤0.12	≥2		

Kahlmeter et al. JAC2003(52):145-8

EUCAST presentation, CLSI, Boston, July 2009.

E.coli, Klebsiella, Proteus EUCAST vs. CLSI

Antimicrobial	EUCAST S≤/R> (mg/L)	CLSI S≤/R> (mg/L)
Ampicillin	8 / 8	8 / 16
Cefotaxime	1/2	8 / 32
Ceftazidime	2/8	8 / 16
Cefuroxime	8* / 8	4 / 16
lmi-/Meropenem	2/8	4 / 8
Ciprofloxacin	0.5 / 1	1/2
Gentamicin/Tobra	2/4	4 / 8
Amikacin	8 / 16	16 / 32
Trimethoprim	2/4	8 / 8
Nitrofurantoin	64 / 64	32 / 64

^{*}Increased from 4 to 8 mg/L to avoid dividing the wild type MIC distribution

EUCAST presentation, CLSI, Boston, July 2009.

P.	aeruginos UCAST vs. CLSI	a
Antimicrobial	EUCAST S≤/R> (mg/L)	CLSI S≤/R> (mg/L)
Ceftazidime	8/8	8/16
Piperacillin(tzb)	16 / 16	64 / 64
Imipenem	4 / 8	4 / 8
Ciprofloxacin	0.5 / 1	1/2
Genta/Tobra	4 / 4	4 / 8

EUCAST - CLSI bei Enterobakterien

				Bewertung	- MHK (mg	g/l)				
	(CLSI 2009	•		CLSI 2010)	EU	EUCAST		
	S	I	R	S	I	R	S	R		
Cefazolin	≤8	16	≥32	≤1	2	≥4				
Cefuroxim	≤4	8-16	≥32	≤4	8-16	≥32	≤8	>8		
Cefotaxim	≤ 8	16-32	≥64	≤1	2	≥4	≤1	>2		
Ceftazidim	≤ 8	16	≥32	≤4	8	≥16	≤1	>4		
Cefepime	≤8	16	≥32	≤8	16	≥32	≤1	>4		
Ampicillin	≤8	16	≥32	≤8	16	≥32		8		
Am/Sulb	≤8	16	≥32	≤8	16	≥32		8		
Piperacillin	≤16	32-64	≥128	≤16	32-64	≥128	≤8	>16		
Pip/Taz	≤16	32-64	≥128	≤16	32-64	≥128	≤8	>16		

Becton Dickinson Somer 2010:

Mit den zurzeit vorhandenen CLSI-Panels ist aufgrund der vorhandenen Antibiotika-Konzentrationen eine Bewertung nach CLSI 2010 nicht möglich.

Solange die FDA die neuen Breakpoints nicht übernommen habe, seien sie nicht "mandatory".

Von CLSI zu EUCAST

Resistenztestung

Entscheidung für EUCAST

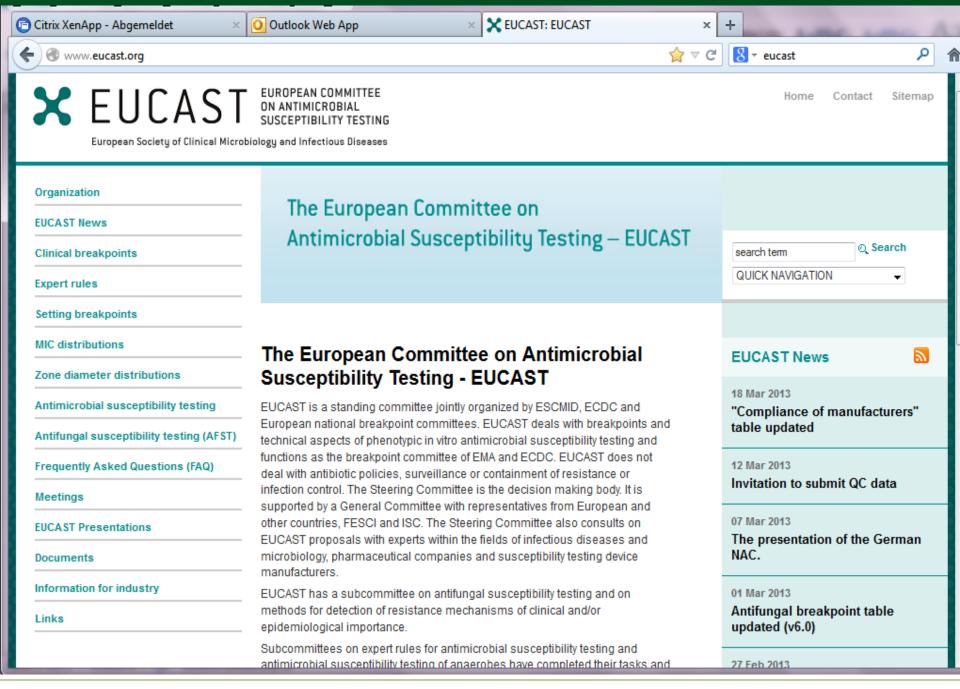
Implementierung

Resistenzstatistik

EUCAST presentation, CLSI, Boston, July 2009.

EUCAST and CLSI are different EUCAST CLSI

- Committee of representatives of national breakpoint committees and the medical profession in European countries.
- Committee of representatives from the medical profession, science, industry and regulatory authorities

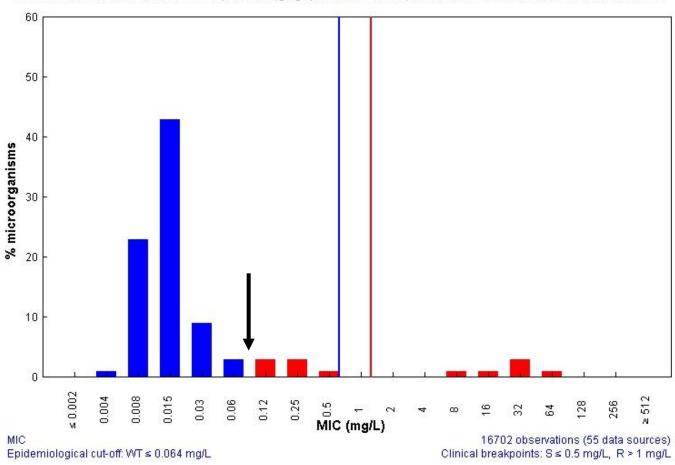

- In dialogue with regulatory authorities (ECDC, EMEA)
- In consultation with industry.
- Consensus decisions, no vote
- Decisions by vote

EUCAST presentation, CLSI, Boston, July 2009.

EUCAST and CLSI are different EUCAST CLSI

- Funded by ESCMID, ECDC and national breakpoint committees.
- Funded by memberships (industry, government institutions, societies, laboratories) and sale of documents.

Resistenztestung


- Vorteile durch EUCAST
 - Breakpoints
 - MHK-Verteilung der Wildtypen => Epidemiologische cut-offs
 - » Erlaubt das Erkennen neuer Resistenzmechanismen
 - Klinische Breakpoints (S/I/R) => wahrscheinliche Wirksamkeit

MHK – Verteilung

Ciprofloxacin / Escherichia coli **EUCAST MIC Distribution - Reference Database 2012-05-09**

MIC distributions include collated data from multiple sources, geographical areas and time periods and can never be used to infer rates of resistance

11

Resistenztestung mit EUCAST

- Vorteile durch EUCAST
 - Breakpoints
 - MHK-Verteilung der Wildtypen => Epidemiologische cut-offs
 - » Erlaubt das Erkennen neuer Resistenzmechanismen
 - Klinische Breakpoints (S/I/R) => wahrscheinliche Wirksamkeit
 - Expertenregeln
 - Darstellung der intrinsischen Resistenzen auch gegen Nichtß-Laktame
 - Einheitliche Bewertung der Resistenzergebnisse

EUCAST neue Expert-Regeln 2.0 (29.10.2011)

Received Date: 31-Aug-2011 Revised Date: 10-Oct-2011 Accepted Date: 17-Oct-2011 Article type: Invited Review

EUCAST Expert Rules in Antimicrobial Susceptibility Testing

Roland Leclercq^{1,2}, Rafael Cantón^{2,3,4*}, Derek F.J. Brown⁴, Christian G. Giske^{2,4,5}, Peter Heisig^{2,6}, Alasdair P. MacGowan^{4,7}, Johan W. Mouton^{4,8}, Patrice Nordmann^{2,9}, Arne C. Rodloff^{4,10}, Gian Maria Rossolini^{2,11}, Claude-James Soussy^{4,12}, Martin Steinbakk^{4,13}, Trevor G. Winstanley^{2,14}, and

Gunnar Kahlmeter^{4,15}

Intrinsische Resistenzen in Enterobakterien

Table 1. Intrinsic resistance in Enterobacteriaceae. Enterobacteriaceae are also intrinsically resistant to benzylpenicillin, glycopeptides, fusidic acid, macrolides (with some exceptions¹), lincosamides, streptogramins, rifampicin, daptomycin and linezolid.

Rule no.	Organisms	Ampicillin	Amoxicilin- clavulanate	Ticarcillin	Piperacillin	Cefazolin	Cefoxitin	Cefamandole	Cefuroxime	Aminoglycosides	Tetracyclines/ tigecycline	Polymy xin B/ Colistin	Nitrofurantoin
1.1	Citrobacter koseri	R		R	R								
1.2	Citrobacter freundii	R	R			R	æ						
1.3	Enterobacter cloacae	R	R			R	R						
1.4	Enterobacter aerogenes	R	R			R	R						
1.5	Escherichia hermannii	R		R									
1.6	Hafnia alvei	R	R			R							
1.7	Klebsiella spp.	R		R									
1.8	Morganella morganii	R	R			R			R		R	R	R
1.9	Proteus mirabilis										R	R	R
1.10	Proteus vulgaris	R				R		R	R		R	R	R
1.11	Proteus penneri	R				R		R	R		R	R	R
1.12	Providencia rettgeri	R	R			R					R	R	R
1.13	Providencia stuartii	R	R			R				Note ²	R	R	R
1.14	Serratia marcescens	R	R			R		R	R	Note ³		R	R
1.15	Yersinia enterocolitica	R	R	R		R	R	R					
1.16	Yersinia pseudotuberculosis											R	

Intrinsische Resistenzen in Nonfermentern

Table 2. Intrinsic resistance in non-fermentative Gram-negative bacteria. Non-fermentative Gram-negative bacteria are also intrinsically resistant to benzylpenicillin, cefoxitin, cefamandole, cefuroxime, glycopeptides, fusidic acid, macrolides, lincosamides, streptogramins, rifampicin, daptomycin and linezolid

Rule no.	Organisms	Ampicillin	Amoxicillin- Clavulanate	Ticarcillin	Ticarcillin- clavulanate	2	Piperacillin- tazobactam	 	Cefotaxime	Ceftriaxone	Ceftazidime	Ertapenem	Imipenem	Meropenem	Ciprofloxacin	Chloramphenicol	Aminoglycosides	Trimethoprim	Trimethoprim- sulfamethoxazole	Fosfomycin	Tetracyclines/ Tigecycline	Polymyxin B/ Colistin
2.1	Acinetobacter baumannii,	R1	R¹					R	R	R		R						R		R		
	Acinetobacter calcoaceticus																					
2.2	Achromobacter xylosoxydans	R						R	R	R		R										
2.3	Burkholderia cepacia complex ²	R	R	R	R			R				R	R		R	R	R³	R		R		R
2.4	Elizabethkingia meningoseptica	R		R	R			R	R	R	R	R	R	R								R
2.5	Ochrobactrum anthropi	R	R	R	R	R	R	R	R	R	R	R										
2.6	Pseudomonas aeruginosa	R	R					R	R	R		R				R	Note ⁴	R⁵	R⁵		R	
2.7	Stenotrophomonas maltophilia	R	R	R		R	R	R	R	R	R⁵	R	R	R			R³	R'		R		

R = resistant

¹ Acinetobacter baumannii may appear susceptible to ampicillin-sulbactam due to activity of sulbactam against this species.

² Burkholderia cepacia complex includes different species. Some strains may appear susceptible to some β-lactams in vitro but they are clinically resistant and are shown as R in the table.

³ Burkholderia cepacia and Stenotrophomonas maltophilia are intrinsically resistant to all aminoglycosides. Intrinsic resistance is attributed to poor permeability and putative efflux. In addition, most Stenotrophomonas maltophilia produce the AAC(6')Iz enzyme.

⁴ Pseudomonas aeruginosa is intrinsically resistant to kanamycin and neomycin due to low level APH(3')-IIb activity.

⁵Pseudomonas aeruginosa typically is resistant to trimethoprim and moderately susceptible to sulfonamides. Although it may appear susceptible in vitro to trimethoprim-sulfamethoxazole, it should be considered resistant.

⁶Stenotrophomonas maltophilia may show low ceftazidime MIC values but should be considered resistant.

⁷Stenotrophomonas maltophilia typically is susceptible to trimethoprim-sulfamethoxazole, but resistant to trimethoprim alone.

A	A	В	С	D	Е	F	G			
1	Enterobacteriaceae						EUCAST Clinical Breakpoint Table v. 3.1, valid from 2013-02-11			
2		ŧ.								
3 4							Disk diffusion (EUCAST standardised disk diffusion method) Medium: Mueller-Hinton agar Inoculum: McFarland 0.5 Incubation: Air, 35±1°C, 18±2h Reading: Read zone edges as the point showing no growth viewed from the back of the plate against a dark background illuminated with reflected light. Quality control: Escherichia coli ATCC 25922			
5	Penicillins ¹		akpoint g/L)	Disk content (µg)	breal	iameter (point im)	Notes Numbers for comments on MIC breakpoints Letters for comments on disk diffusion			
6		S≤	R>	T SI	S ≥	R<				
7						200 00				
8	Benzylpenicillin	8	629		3	-				
9	Ampicillin	81	8	10	14 ^{A,B}	14 ⁸	1/A. Wild type Enterobacteriaceae are categorised as susceptible to aminopenicillins. Some countries prefer to categorise wild type isolates of E. coli and P. mirabilis as intermediate. When this is the case, use the MIC breakpoint S ≤ 0.5 mg/L and the corresponding zone diameter breakpoint S ≥ 50 mm. B. Ignore growth that may appear as a thin inner zone on some batches of Mueller-Hinton agars.			
	Ampicillin-sulbactam	81.2	8 ²	10-10	14 ^{A,B}	14 ⁸	2. For susceptibility testing purposes, the concentration of sulbactam is fixed at 4 mg/L.			
	Amoxicillin	8 ¹	8	6 - 8	Note ^C	Note	C. Susceptibility inferred from ampicillin.			
12	Amoxicillin-clavulanate	81,3	8 ³	20-10	17 ^{A,B}	17 ⁸	3. For susceptibility testing purposes, the concentration of clavulanate is fixed at 2 mg/L.			
13	Piperacillin	8	16	30	20	17				
	Piperacillin-tazobactam	84	16 ⁴	30-6	20	17	4. For susceptibility testing purposes, the concentration of tazobactam is fixed at 4 mg/L.			
15	Ticarcillin	8	16	75	23	23	15 25 37 37 37 37 37 37 37 37 37 37 37 37 37			
16	Ticarcillin-clavulanate	83	16 ³	75-10	23	23				
17										
18	Phenoxymethylpenicillin	78	559		78	6573				
19				N N						
20	Oxacillin	- 3	·		8	100				
21	Cloxacillin	1 18	19-81		9	0.00				
22	Dicloxacillin	88	888		9	1049				
23	Flucloxacillin	23	828	. 0	8	1920				
24	2 3 3 3 3 3									
25	Mecillinam (uncomplicated UTI only)	85	85	10	15 ^{E,F}	15 ^{E, F}	5/E. Mecillinam (pivmecillinam) breakpoints relate to E. coli, Klebsiella spp. and P. mirabilis only. F. Ignore isolated colonies within the inhibition zone for E. coli.			
26 27										
14	Cephalosporins ¹	(mg		Disk content	breal	iameter cpoint	Numbers for comments on MIC breakpoints			
I4	Content Notes Changes Enterob	acteriace	ae Pseu	id / S.ma	tophilia	Acineto	b / Staphs / Enterococcus / Strept A,B,C,G / Pneumo / Viridans strept / H.in∏ ◀			
	CLSI -> EUCAST, M. Lefmann, 25.03.2013						HELIOS Klinikum Emil von Behring 16			

Microsoft Excel nichtkommerzielle Verwendung - Breakpoint_table_v_3.1 [Kompatibilitätsmodus]

Von CLSI zu EUCAST

Resistenztestung

Entscheidung für EUCAST

Implementierung

Resistenzstatistik

Resistenztestung (CLSI) – vor Umstellung

Phönix

- Gram-neg. Panel NMIC/ID-64
- Gram-pos. Panel PMIC/ID-65
- Streptokoken Panel SMIC/ID-9

MHK mit E-Testen

 Bestätigung VRE, Stenotrophomonas, Helicobacter, Pen-Resistenz bei Pneumokoken u. Streptokokken, etc.

Agardiffusion

Streptokokken, Hämophilus, Moraxella, (MR-)Pseudomonas, Nonfermenter, etc.

MHK für Sproßpilze (E-Test, Mikroboullion)

EUCAST – Vorbereitung

- Vorbereitung der Umstellung Monate vorher
 - Information und Schulung der MTAs
 - Automatisiertes Testsystem
 - Updates, neue Untersuchungs-Panel, Anpassung des Regelwerks
 - Agardiffusionstest
 - Medien und AD-Plättchen mit EUCAST-Beladung (verschiedene Hersteller)
 - Anpassung der Methoden zur Qualitätssicherung
 - Unterschiede zu bekannten Verfahren hervorheben (Plättchenbeladung, Medien, Beurteilung der HH, etc.)
 - Erstellung neuer Dokumente (Akkreditierung)

EUCAST – Implementierung

- Veränderte Antibiogramme
 - Phönix
 - z.B. Ableitung der Ergebnisse für Aminop/Inhib von Ampicillin für Enterokoken im LIS
 - Agardiffusionsteste
 - Vergleich der Plättchenbeladung und ggf. Anpassung
 - » Ampicillin für Enterokokken, Streptokokken, Hämophilus 2µg
 - » Ampicillin für Enterobakterien 10µg

EUCAST – Qualitätskontrollen

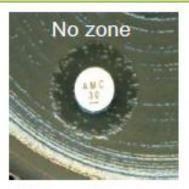
- Agardiffusion
 - Einige AB lagen häufiger nicht im Range
 - Große interindividuelle Schwankungen bei Durchführung
 - Zeitweise bei wöchentlichen Kontrollen immer mal wieder Ausfälle (z.B. Ampicillin (2µg) bei *Hämophilus influenzae*
 - Einstellen des McFarland mit Densitometer sinnvoll
 - Probleme mit Plättchen-Chargen (Haltbarkeit, z.B. Meropenem)

EUCAST – Umstellung Februar 2011 (5 Labore)

- Info an die "Kunden"
- Umstellung an Tag "X" im laufenden Betrieb
- Probleme bei automatisierter Resistenztestung
 - fehlende / falsche Grenzwerte im Gerät
 - fehlende Parameter in der Schnittstelle zum LIS
 - "neue Resistenzphänomene" (Aminoglykosid-Resistenz bei Staphylokokken,....)
- Lieferschwierigkeiten von Untersuchungs-Panel, AD-Testplättchen und Nährmedien

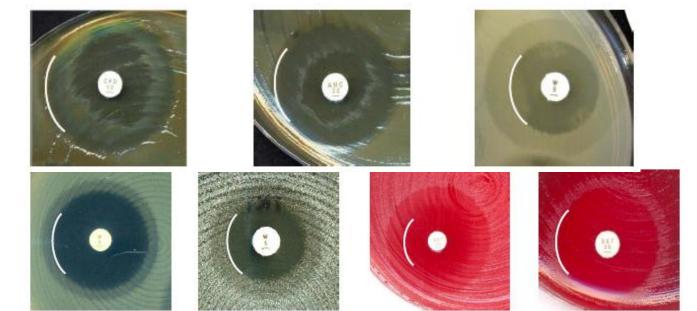
EUCAST – Offene Punkte




Fehlende Breakpoints (BP):

- Stenotrophomonas BP nur für TMP/Sulfa (nicht Levofloxacin, Moxifloxacin, Ticarcillin/Clavulans.)
- Acinetobacter spp. keine BP für Sulbactam u. Tigecyclin
- Andere Nonfermenter (Achromobacter, Burkholderia) keine BP
- Corynebakterien, Bacillus spp. keine BP
- •

EUCAST – Schulung, Schulung, Schulung,....



Reading of zones with colonies within the zone.

E. coli

CoNS

Moraxella

Haemophilus

EUCAST expert rules v2

2010

Ceftazidime and cefepime R breakpoint were reduced from >8 mg/L to >4 mg/L

	EUCAST						
Cefalosporins	S (≤)	R (>)					
Cefotaxime	1	2					
Ceftazidime	1	4					
Cefepime	1	4					

Report as found regardless of the presence of a resistance mechanism (ESBL or other)

Breakpoint tables for interpretation of MICs and zone diameters Version 1.3, January 5, 2011

1. The cephalosporin breakpoints for Enterobacteriaceae will detect all clinically important resistance mechanisms (including ESBL and plasmid mediated AmpC). Some strains that produce beta-lactamases are susceptible or intermediate to 3rd or 4th generation cephalosporins with these breakpoints and should be reported as found, i.e. the presence or absence of an ESBL does not in itself influence the categorization of susceptibility. In many areas, ESBL detection and characterization is recommended or mandatory for infection control purposes.

Carbapenem breakpoints and Enterobacteriaceae

	FDA	CLSI (2	010)*	EUCAST (EMEA) (2009)				
Enterobacteriaceae	S	S	R	S	R	ECOFF		
Imipenem	≤4	≤1*	≥4*	≤2	>8	≤0,5;≤1**		
Meropenem	≤4	≤1*	≥4*	≤2	>8	≤0,125		
Ertapenem	≤2	≤0.25*	≥1*	≤0,5	>1	≤0,06		
Doripenem	≤0,5	≤1*	≥4*	≤1	>4	≤0,12		

^{*}M100-S20U June 2010 **E. coli y K. pneumoniae

Report as found regardless of the presence or absense of a carbapenemase

Breakpoint tables for interpretation of MICs and zone diameters Version 1.3, January 5, 2011

^{1.} The carbapenem breakpoints for Enterobacteriaceae will detect all clinically important resistance mechanisms (including the majority of carbapenemases). Some strains that produce carbapenemase are categorized as susceptible with these breakpoints and should be reported as tested, i.e. the presence or absence of a carbapenemase does not in itself influence the categorization of susceptibility. In many areas, carbapenemase detection and characterization is recommended or mandatory for infection control purposes.

K. pneumoniae – OXA 48

	Ertapene [ı	m MHK mg/l]	Imipene [m MHK mg/l]	Meropenem MHK [mg/l]			
	Phönix	E-Test	Phönix	E-Test	Phönix	E-Test		
Pat. 1 BK	>1.0	1.0	>8.0	0.5	≤1.0	0.5		
Pat. 2 BK	>1.0	4.0	2.0	2.0	≤1.0	2.0		

Beide Pat. verstarben unter Imipenem-Therapie.

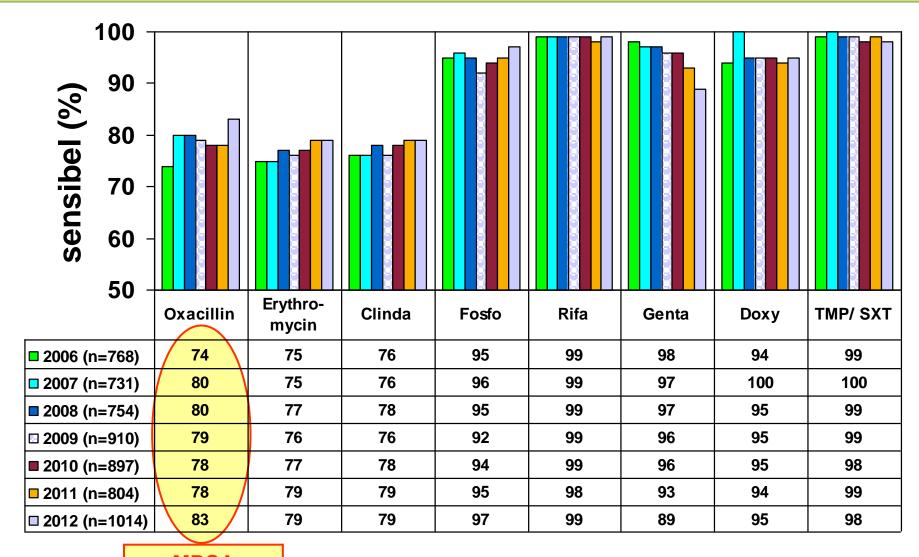
Pat. 2 hatte vor der pos. Bk bereits 10 Tage Imipenem erhalten.

NAC

- Antimicrobial susceptibility testing
 - Strategy at national level
 - Implementation of breakpoints and methods
 - Education (national workshops, websites)
 - Liaison and consultation with EUCAST (chairman or scientific secretary GC representative)
 - Liaison with groups involved in AMR-surveillance (ECDC, EARSS,).
 - QA
- Antimicrobial Policies
- Antimicrobial Resistance Surveillance
- Antimicrobial Consumption and Policies

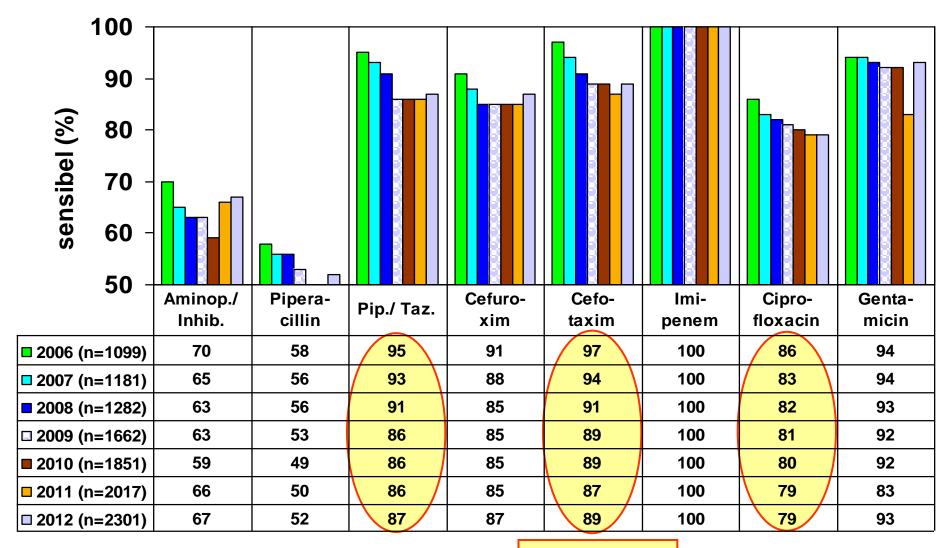
Von CLSI zu EUCAST

Resistenztestung


Entscheidung für EUCAST

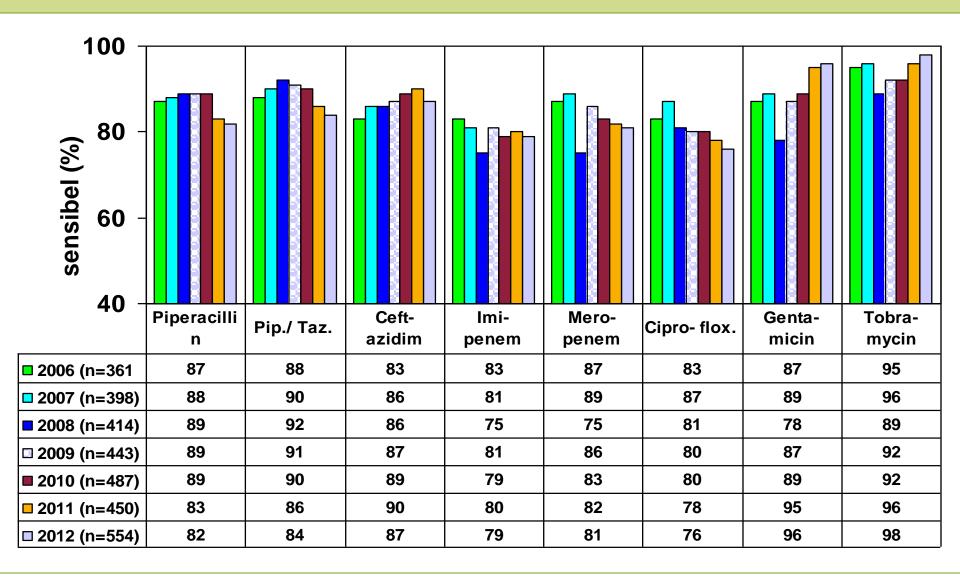
Implementierung

Resistenzstatistik


Staphylococcus aureus

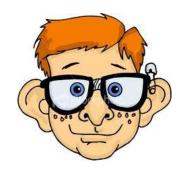

Escherichia coli

Klebsiella pneumoniae



32

Pseudomonas aeruginosa



"Take home"

 EUCAST hat sich in unserer Praxis bewährt. Die Vorteile – Transparenz, Verfügbarkeit, Plausibilität – überwiegen deutlich die Probleme bei der Umstellung im Routinebetrieb

Jeder Moment ist Medizin

Vielen Dank!

HELIOS Klinikum Emil von Behring

www.helios-kliniken.de